3o (3 Sigma) Testing

1. Test a sampling of parts. Write down the breaking strength of each.
2. Work out the Mean (average) number (Breaking strength of each divided by number of parts tested)
3. Then for each breaking strength number: subtract the Mean and square the result
4. Then work out the average of those squared differences.
5. Take the square root of that average to find standard deviation
6. Multiply the standard deviation by three
7. Subtract this from the average breaking strength (Mean) of all tested parts. Result is the 3 Sigma MBS rating. It is 99.73% probable any additional breaks will be at or above this final value.

Example 1:

Test Sample 1 breaks at 1000 lbs
Test Sample 2 breaks at 1100 lbs
Test Sample 3 breaks at 1050 lbs
(Item 2 above)
Mean of above (average) $=3150$ divided by $3=1050$ Lbs Mean
(Item 3 above)
1000-1050 squared $=2500$
$1100-1050$ squared $=2500$
$1050-1050$ squared $=0$
(Item 4 above)
Mean $=1666.66$
(Item 5 above)
Square root of $1666.66=40.82$ Standard Deviation
(Item 6 above)
$40.82 \times 3=122.46 \mathrm{lbs}$
(Item 7 above)
1050 - 122.46 = 927.54 Ibs MBS 3 Sigma Rating

Example 2:

Test Sample 1 breaks at 3000 lbs Test Sample 2 breaks at 3100 lbs Test Sample 3 breaks at 3050 lbs

Test Sample 4 breaks at 3200 lbs

Mean of above (average) $=12,350$ divided by $3=3087.5$ Lbs Mean
$3000-3087.5$ squared $=7656.25$
$3100-3087.5$ squared $=156.25$
$3050-3087.5$ squared $=1406.25$
$3200-3087.5$ squared $=12656.25$
Mean $=5468.75$
Square root of $5468.75=73.95$ Standard Deviation
$73.95 \times 3=221.85 \mathrm{lbs}$
3087.5 - 221.85 = 2865.65 Ibs MBS 3 Sigma Rating

